Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.320
Filtrar
1.
J Enzyme Inhib Med Chem ; 39(1): 2311818, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38488131

RESUMO

In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Relação Estrutura-Atividade , Substâncias Intercalantes/farmacologia , Tionas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Imidazóis/farmacologia , DNA , Apoptose , Simulação de Acoplamento Molecular , DNA Topoisomerases Tipo II/metabolismo , Proliferação de Células
2.
Comput Biol Chem ; 109: 108029, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387123

RESUMO

Cancer is a global public health problem characterized by deviations in the mechanisms that control cell proliferation, resulting in mutations and variations in the structure of DNA. The mechanisms of action of chemotherapeutic drugs are related to their interactions and binding with DNA; consequently, the development of antineoplastic agents that target DNA has extensively focused on use of acridine, a heterocyclic molecule that binds to deoxyribonucleic acid via intercalation, a process that modifies DNA and makes replication impossible. In this context, this study aimed to computationally investigate how acridine intercalators interact with DNA by evaluating the mechanism of interactions, binding, and interaction energies using quantum mechanics calculations. Molecular electrostatic potential (MEP) analysis revealed that acridine has well- distributed negative charges in the center of the molecule, indicative of a dominant electron-rich region. Acridine exhibits well-defined π orbitals (HOMO and LUMO) on the aromatic rings, suggesting that charge transfer occurs within the molecule and may be responsible for the pharmacological activity of the compound. Structural analysis revealed that acridine interacts with DNA mainly through hydrogen bonds between HAcridine… ODNA with bond lengths ranging from 2.370 Što 3.472 Å. The Binding energy (ΔEBind) showed that acridine interacts with DNA effectively for all complexes and the electronic energy results (E+ZPE) for complexes revealed that the complexes are more stable when the DNA-centered acridine molecule. The Laplacian-analysis topological QTAIM parameter (∇2ρ(r)) and total energy (H(r)) categorized the interactions as being non-covalent in nature. The RGD peak distribution in the NCI analysis reveals the presence of van der Waals interactions, predominantly between the intercalator and DNA. Accordingly, we confirm that acridine/DNA interactions are relevant for understanding how the intercalator acts within nucleic acids.


Assuntos
Antineoplásicos , Substâncias Intercalantes , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Modelos Moleculares , Acridinas/farmacologia , DNA/química , Antineoplásicos/farmacologia
3.
Arch Pharm (Weinheim) ; 357(1): e2300454, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37867206

RESUMO

Breast cancer continues to be the most frequent cancer worldwide. In practice, successful clinical outcomes were achieved via targeting DNA. Along with the advances in introducing new DNA-targeting agents, the "sugar approach" design was employed herein to develop new intercalators bearing pharmacophoric motifs tethered to carbohydrate appendages. Accordingly, new benzimidazole acyclic C-nucleosides were rationally designed, synthesized and assayed via MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay to evaluate their cytotoxicity against MCF-7 and MDA-MB-231 breast cancer cells compared to normal fibroblasts (Wi-38), compared to doxorubicin. (1S,2R,3S,4R)-2-(1,2,3,4,5-Pentahydroxy)pentyl-1H-5,6-dichlorobenzimidazole 7 and (1S,2R,3S,4R)-2-(1,2,3,4,5-pentahydroxy)pentyl-1H-naphthimidazole 13 were the most potent and selective derivatives against MCF-7 (half-maximal inhibitory concentration [IC50 ] = 0.060 and 0.080 µM, selectivity index [SI] = 9.68 and 8.27, respectively) and MDA-MB-231 cells (IC50 = 0.299 and 0.166 µM, SI = 1.94 and 3.98, respectively). Thus, they were identified as the study hits for mechanistic studies. Both derivatives induced DNA damage at 0.24 and 0.29 µM, respectively. The DNA damage kinetics were studied compared to doxorubicin, where they both induced faster damage than doxorubicin. This indicated that 7 and 13 showed a more potent DNA-damaging effect than doxorubicin. Docking simulations within the DNA double strands highlighted the role of both the heterocyclic core and the sugar side chain in exhibiting key H-bond interactions with DNA bases.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/química , Substâncias Intercalantes/farmacologia , Nucleosídeos/farmacologia , Relação Estrutura-Atividade , Doxorrubicina/farmacologia , DNA , Benzimidazóis/farmacologia , Açúcares
4.
Int J Biol Macromol ; 254(Pt 3): 127651, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949265

RESUMO

Four new nitrogen-containing heterocyclic derivatives (acridine, quinoline, indole, pyridine) were synthesized and their biological properties were evaluated. The compounds showed affinity for DNA and HSA, with CAIC and CAAC displaying higher binding constants (Kb) of 9.54 × 104 and 1.06 × 106, respectively. The fluorescence quenching assay (Ksv) revealed suppression values ranging from 0.34 to 0.64 × 103 M-1 for ethidium bromide (EB) and 0.1 to 0.34 × 103 M-1 for acridine orange (AO). Molecular docking confirmed the competition of the derivatives with intercalation probes at the same binding site. At 10 µM concentrations, the derivatives inhibited topoisomerase IIα activity. In the antiproliferative assays, the compounds demonstrated activity against MCF-7 and T47-D tumor cells and nonhemolytic profile. Regarding toxicity, no acute effects were observed in the embryos. However, some compounds caused enzymatic and cardiac changes, particularly the CAIC, which increased SOD activity and altered heart rate compared to the control. These findings suggest potential antitumor action of the derivatives and indicate that substituting the acridine core with different cores does not interfere with their interaction and topoisomerase inhibition. Further investigations are required to assess possible toxicological effects, including reactive oxygen species generation.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase , Inibidores da Topoisomerase/farmacologia , Inibidores da Topoisomerase/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Antineoplásicos/química , DNA/química , Substâncias Intercalantes/farmacologia , Acridinas/farmacologia , Acridinas/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
5.
Bioorg Chem ; 142: 106953, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37925887

RESUMO

Herein, a series of isatin tethered indolo[2,3-b]quinoxaline hybrids was synthesized by considering the pharmacophoric features of known DNA intercalators and topoisomerase II inhibitors. The anti-proliferative properties of the synthesized compounds were evaluated against ovarian cancer cell lines (SKOV-3 and Hey A8). Four of the compounds exhibited promising anti-proliferative activities, with one of them being 10-fold more potent than cisplatin against drug-resistant Hey A8 cells. Further investigations were carried out to determine the DNA intercalating affinities of the most active compounds as potential mechanisms for their anti-proliferative activities. ADMET in silico studies were performed to assess the physicochemical, pharmacokinetics, and toxicity parameters of active compounds. This study, to the best of our knowledge, is the first report on the potential of isatin-indoloquinoxaline hybrids as structural blueprints for the development of new DNA intercalators. Additionally, it explores their potential to circumvent platinum-based resistance in ovarian cancer.


Assuntos
Antineoplásicos , Isatina , Neoplasias Ovarianas , Humanos , Feminino , Isatina/farmacologia , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Linhagem Celular Tumoral , Antineoplásicos/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , DNA/metabolismo , Relação Estrutura-Atividade
6.
J Enzyme Inhib Med Chem ; 38(1): 2242714, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592917

RESUMO

A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines. In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised. The targets and the SeNP derivatives were examined for their cytotoxicity towards five cancer cell lines. The inhibitory potencies of the best members against Topo I and Topo II were also assayed besides their DNA intercalation abilities. Compound 7d NPs exhibited the best inhibition against Topo I and Topo II enzymes with IC50 of 0.042 and 1.172 µM, respectively. The ability of compound 7d NPs to arrest the cell cycle and induce apoptosis was investigated. It arrested the cell cycle in the A549 cell at the S phase and prompted apoptosis by 41.02% vs. 23.81% in the control. In silico studies were then performed to study the possible binding interactions between the designed members and the target proteins.


A new wave of dual Topo I/II inhibitors was designed and synthesised via the hybridisation of spirooxindoles and pyrimidines.In situ selenium nanoparticles (SeNPs) for some derivatives were synthesised.Cytotoxicity, Topo I and Topo II inhibitory assays, and DNA intercalation abilities were evaluated.Compound 7d NPs showed the best Topo I and Topo II inhibition.Cell cycle arrest, apoptosis induction, and molecular docking studies were performed.


Assuntos
Nanopartículas , Selênio , Selênio/farmacologia , Substâncias Intercalantes/farmacologia , Ciclo Celular , DNA Topoisomerases Tipo II , DNA
7.
Inorg Chem ; 62(23): 8948-8959, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37248070

RESUMO

A combined quantum-mechanical and classical molecular dynamics study of a recent Ru(II) complex with potential dual anticancer action is reported here. The main basis for the multiple action relies on the merocyanine ligand, whose electronic structure allows the drug to be able to absorb within the therapeutic window and in turn efficiently generate 1O2 for photodynamic therapy application and to intercalate within two nucleobases couples establishing reversible electrostatic interactions with DNA. TDDFT outcomes, which include the absorption spectrum, triplet states energy, and spin-orbit matrix elements, evidence that the photosensitizing activity is ensured by an MLCT state at around 660 nm, involving the merocyanine-based ligand, and by an efficient ISC from such state to triplet states with different characters. On the other hand, the MD exploration of all the possible intercalation sites within the dodecamer B-DNA evidences the ability of the complex to establish several electrostatic interactions with the nucleobases, thus potentially inducing DNA damage, though the simulation of the absorption spectra for models extracted by each MD trajectory shows that the photosensitizing properties of the complex remain unaltered. The computational results support that the anti-tumor effect may be related to multiple mechanisms of action.


Assuntos
Fotoquimioterapia , Rutênio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Ligantes , Dano ao DNA , Rutênio/farmacologia , Rutênio/química
8.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982675

RESUMO

Photodynamic therapy is a minimally invasive procedure used in the treatment of several diseases, including some types of cancer. It is based on photosensitizer molecules, which, in the presence of oxygen and light, lead to the formation of reactive oxygen species (ROS) and consequent cell death. The selection of the photosensitizer molecule is important for the therapy efficiency; therefore, many molecules such as dyes, natural products and metallic complexes have been investigated regarding their photosensitizing potential. In this work, the phototoxic potential of the DNA-intercalating molecules-the dyes methylene blue (MB), acridine orange (AO) and gentian violet (GV); the natural products curcumin (CUR), quercetin (QT) and epigallocatechin gallate (EGCG); and the chelating compounds neocuproine (NEO), 1,10-phenanthroline (PHE) and 2,2'-bipyridyl (BIPY)-were analyzed. The cytotoxicity of these chemicals was tested in vitro in non-cancer keratinocytes (HaCaT) and squamous cell carcinoma (MET1) cell lines. A phototoxicity assay and the detection of intracellular ROS were performed in MET1 cells. Results revealed that the IC50 values of the dyes and curcumin in MET1 cells were lower than 30 µM, while the values for the natural products QT and EGCG and the chelating agents BIPY and PHE were higher than 100 µM. The IC50 of MB and AO was greatly affected by irradiation when submitted to 640 nm and 457 nm light sources, respectively. ROS detection was more evident for cells treated with AO at low concentrations. In studies with the melanoma cell line WM983b, cells were more resistant to MB and AO and presented slightly higher IC50 values, in line with the results of the phototoxicity assays. This study reveals that many molecules can act as photosensitizers, but the effect depends on the cell line and the concentration of the chemical. Finally, significant photosensitizing activity of acridine orange at low concentrations and moderate light doses was demonstrated.


Assuntos
Curcumina , Dermatite Fototóxica , Fotoquimioterapia , Neoplasias Cutâneas , Humanos , Fármacos Fotossensibilizantes/química , Substâncias Intercalantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Curcumina/farmacologia , Laranja de Acridina , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Fotoquimioterapia/métodos , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/metabolismo , Dermatite Fototóxica/tratamento farmacológico , Corantes
9.
Arch Pharm (Weinheim) ; 356(5): e2200449, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36807372

RESUMO

A simple "click" protocol was employed in the quest of synthesizing 1,2,3-triazole-linked benzimidazoles as promising anticancer agents on various human cancer cell lines such as A549, HCT116, SK-Mel-28, HT-29, and MCF-7. Compound 12j demonstrated significant cytotoxic potential towards SK-Mel-28 cancer cells (IC50 : 4.17 ± 0.09 µM) and displayed no cytotoxicity (IC50 : > 100 µM) against normal human BEAS-2B cells inferring its safety towards normal healthy cells. Further to comprehend the underlying apoptosis mechanisms, AO/EB, dichlorodihydrofluorescein diacetate (DCFDA), and 4',6-diamidino-2-phenylindole (DAPI) staining were performed, which revealed the nuclear and morphological alterations. Compound 12j displayed impairment in cellular migration and inhibited colony formation. The annexin V binding assay and JC-1 were implemented to evaluate the scope of apoptosis and the loss of the mitochondrial transmembrane potential in SK-Mel-28 cells. Cell-cycle analysis revealed that compound 12j arrested the cells at the G2/M phase in a dose-dependent manner. Target-based assays established the inhibition of tubulin polymerization by 12j at an IC50 value of 5.65 ± 0.05 µM and its effective binding with circulating tumor DNA as a DNA intercalator. The detailed binding interactions of 12j with tubulin and DNA were examined by docking studies on PDB ID: 3E22 and DNA hexamer (PDB ID: 1NAB), respectively.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Humanos , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Substâncias Intercalantes/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Tubulina (Proteína)/metabolismo , Antineoplásicos/química , Apoptose , DNA , Simulação de Acoplamento Molecular , Polimerização
10.
J Enzyme Inhib Med Chem ; 38(1): 2171029, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36701269

RESUMO

Topoisomerase II (TOP-2) is a promising molecular target for cancer therapy. Numerous antibiotics could interact with biologically relevant macromolecules and provoke antitumor potential. Herein, molecular docking studies were used to investigate the binding interactions of 138 antibiotics against the human topoisomerase II-DNA complex. Followed by the MD simulations for 200 ns and MM-GBSA calculations. On the other hand, the antitumor activities of the most promising candidates were investigated against three cancer cell lines using doxorubicin (DOX) as a reference drug. Notably, spiramycin (SP) and clarithromycin (CL) showed promising anticancer potentials on the MCF-7 cell line. Moreover, azithromycin (AZ) and CL exhibited good anticancer potentials against the HCT-116 cell line. Finally, the TOP-2 enzyme inhibition assay was carried out to confirm the proposed rationale. Briefly, potent TOP-2 inhibitory potentials were recorded for erythromycin (ER) and roxithromycin (RO). Additionally, a SAR study opened eyes to promising anticancer pharmacophores encountered by these antibiotics.HighlightsMolecular docking studies of 139 antibiotics against the topoisomerase II-DNA complex.SP, RO, AZ, CL, and ER were the most promising and commercially available candidates.Molecular dynamics simulations for 200 ns for the most promising five complexes.MM-GBSA calculations for the frontier five complexes.SP and CL showed promising anticancer potentials on the MCF-7 cell line, besides, AZ and CL exhibited good anticancer potentials against the HCT-116 cell line.Potent TOP-2 inhibitory potentials were recorded for ER and RO.


Assuntos
Antineoplásicos , Inibidores da Topoisomerase II , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Substâncias Intercalantes/farmacologia , Antibacterianos/farmacologia , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Linhagem Celular Tumoral , DNA , DNA Topoisomerases Tipo II/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais
11.
J Enzyme Inhib Med Chem ; 38(1): 2157825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629421

RESUMO

In this research, two novel series of dibenzo[b,f]azepines (14 candidates) were designed and synthesised based on the rigidification principle and following the reported doxorubicin's pharmacophoric features. The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines. Further, the promising candidates (5a-g) were evaluated for their ability to inhibit topoisomerase II, where 5e was noticed to be the most active congener. Moreover, its cytotoxicity was evaluated against leukaemia SR cells. Also, 5e arrested the cell cycle at the G1 phase and increased the apoptosis ratio by 37.34%. Furthermore, in vivo studies of 5e showed the inhibition of tumour proliferation and the decrease in its volume. Histopathology and liver enzymes were examined as well. Besides, molecular docking, physicochemical, and pharmacokinetic properties were carried out. Finally, a SAR study was discussed to open the gate for further optimisation of the most promising candidate (5e).HighlightsTwo novel series of dibenzo[b,f]azepines were designed and synthesised based on the rigidification principle in drug design.The anti-proliferative activity was evaluated at the NCI against a panel of 60 cancer cell lines.5e was the most active anti-topo II congener (IC50 = 6.36 ± 0.36 µM).5e was evaluated against leukaemia SR cells and its cytotoxic effect was confirmed (IC50 = 13.05 ± 0.62 µM).In vivo studies of 5e significantly inhibited tumour proliferation by 62.7% and decreased tumour volume to 30.1 mm3 compared to doxorubicin treatment.


Assuntos
Antineoplásicos , Leucemia , Humanos , Inibidores da Topoisomerase II/química , Relação Estrutura-Atividade , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Azepinas/farmacologia , Antineoplásicos/química , Doxorrubicina/farmacologia , DNA , Proliferação de Células , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , DNA Topoisomerases Tipo II/metabolismo
12.
Antiviral Res ; 207: 105416, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36113629

RESUMO

Cellular responses to stress generally lead to the activation of the endoplasmic reticulum-associated protein degradation (ERAD) pathway. Several lines of study support that ERAD may be playing a proviral role during flaviviral infection. A key host factor in ERAD is the valosin-containing protein (VCP), an ATPase which ushers ubiquitin-tagged proteins to degradation by the proteasome. VCP exhibits different proviral activities, such as engaging in the biogenesis of viral replication organelles and facilitating flavivirus genome uncoating after the viral particle entry. To investigate the possible antiviral value of drugs targeting VCP, we tested two inhibitors: eeyarestatin I (EEY) and xanthohumol (XAN). Both compounds were highly effective in suppressing Zika virus (ZIKV) and Usutu virus (USUV) replication during infection in cell culture. Further analysis revealed an unexpected virucidal activity for EEY, but not for XAN. Preincubation of ZIKV or USUV with EEY before inoculation to cells resulted in significant decreases in infectivity in a dose- and time-dependent manner. Viral genomes in samples previously treated with EEY were more sensitive to propidium monoazide, an intercalating agent, with 10- to 100-fold decreases observed in viral RNA levels, supporting that EEY affects viral particle integrity. Altogether, these results support that EEY is a strong virucide against two unrelated flaviviruses, encouraging further studies to investigate its potential use as a broad-acting drug or the development of improved derivatives in the treatment of flaviviral infection.


Assuntos
Infecções por Flavivirus , Flavivirus , Infecção por Zika virus , Zika virus , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/farmacologia , Adenosina Trifosfatases/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Flavivirus/genética , Humanos , Hidrazonas , Hidroxiureia/análogos & derivados , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Viral/genética , Ubiquitinas/metabolismo , Proteína com Valosina/metabolismo , Replicação Viral
13.
J Chem Inf Model ; 62(24): 6649-6666, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35895094

RESUMO

GC-rich sequences are recurring motifs in oncogenes and retroviruses and could be targeted by noncovalent major-groove therapeutic ligands. We considered the palindromic sequence d(G1G2C3G4C5C6)2, and designed several oligopeptide derivatives of the anticancer intercalator mitoxantrone. The stability of their complexes with an 18-mer oligonucleotide encompassing this sequence in its center was validated using polarizable molecular dynamics. We report the most salient structural features of two novel compounds, having a dialkylammonium group as a side chain on both arms. The anthraquinone ring is intercalated in the central d(CpG)2 sequence with its long axis perpendicular to that of the two base pairs. On each strand, this enables each ammonium group to bind in-register to O6/N7 of the two facing G bases upstream. We subsequently designed tris-intercalating derivatives, each dialkylammonium substituted with a connector to an N9-aminoacridine intercalator extending our target range from a six- to a ten-base-pair palindromic sequence, d(C1G2G3G4C5G6C7C8C9G10)2. The structural features of the complex of the most promising derivative are reported. The present design strategy paves the way for designing intercalator-oligopeptide derivatives with even higher selectivity, targeting an increased number of DNA bases, going beyond ten.


Assuntos
Substâncias Intercalantes , Oligopeptídeos , Substâncias Intercalantes/farmacologia , Substâncias Intercalantes/química , Mitoxantrona/farmacologia , DNA/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico
14.
J Enzyme Inhib Med Chem ; 37(1): 1556-1567, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35635148

RESUMO

Sixteen [1, 2, 4]triazolo[4,3-a]quinoxalines as DNA intercalators-Topo II inhibitors have been prepared and their anticancer actions evaluated towards three cancer cell lines. The new compounds affected on high percentage of MCF-7. Derivatives 7e, 7c and 7b exhibited the highest anticancer activities. Their activities were higher than that of doxorubicin. Molecular docking studies showed that the HBA present in the chromophore, the substituted distal phenyl moiety and the extended linkers enable our derivatives to act as DNA binders. Also, the pyrazoline moiety formed six H-bonds and improved affinities with DNA active site. Finally, 7e, 7c and 7b exhibited the highest DNA affinities and act as traditional intercalators of DNA. The most active derivatives 7e, 7c, 7b, 7g and 6e were subjected to evaluate their Topo II inhibition and DNA binding actions. Derivative 7e exhibited the highest binding affinity. It intercalates DNA at IC50 = 29.06 µM. Moreover, compound 7e potently intercalates DNA at an IC50 value of 31.24 µM. Finally, compound 7e demonstrated the most potent Topo II inhibitor at a value of 0.890 µM. Compound 7c exhibited an equipotent IC50 value (0.940 µM) to that of doxorubicin. Furthermore, derivatives 7b, 7c, 7e and 7g displayed a high ADMET profile.


Assuntos
Substâncias Intercalantes , Inibidores da Topoisomerase II , DNA , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia
15.
Mar Drugs ; 20(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35323484

RESUMO

Marine alkaloid fascaplysin and its derivatives are known to exhibit promising anticancer properties in vitro and in vivo. However, toxicity of these molecules to non-cancer cells was identified as a main limitation for their clinical use. Here, for the very first time, we synthesized a library of fascaplysin derivatives covering all possible substituent introduction sites, i.e., cycles A, C and E of the 12H-pyrido[1-2-a:3,4-b']diindole system. Their selectivity towards human prostate cancer versus non-cancer cells, as well as the effects on cellular metabolism, membrane integrity, cell cycle progression, apoptosis induction and their ability to intercalate into DNA were investigated. A pronounced selectivity for cancer cells was observed for the family of di- and trisubstituted halogen derivatives (modification of cycles A and E), while a modification of cycle C resulted in a stronger activity in therapy-resistant PC-3 cells. Among others, 3,10-dibromofascaplysin exhibited the highest selectivity, presumably due to the cytostatic effects executed via the targeting of cellular metabolism. Moreover, an introduction of radical substituents at C-9, C-10 or C-10 plus C-3 resulted in a notable reduction in DNA intercalating activity and improved selectivity. Taken together, our research contributes to understanding the structure-activity relationships of fascaplysin alkaloids and defines further directions of the structural optimization.


Assuntos
Antineoplásicos , Indóis , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , DNA/metabolismo , Humanos , Indóis/química , Indóis/farmacologia , Substâncias Intercalantes/química , Substâncias Intercalantes/farmacologia , Relação Estrutura-Atividade
16.
Arch Pharm (Weinheim) ; 355(6): e2100506, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35293628

RESUMO

Thirteen novel [1,2,4]triazolo[4,3-c]quinazoline derivatives as DNA intercalators were synthesized and their anticancer activities evaluated against HepG2 and HCT-116 cells. A docking study was carried out to explore how the new derivatives bind to active sites of DNA. The docking data were highly interrelated with that of biological testing. The HCT-116 cell line was the most sensitive one to the effect of the new derivatives. Compound 7c exhibited the highest anticancer activities against both the HepG2 and HCT116 cancer cell lines. Despite this compound displaying less activity than doxorubicin, it could be useful as a template for future manipulation, optimization, and investigation to produce other analogs with potential activity. The most active derivatives, 7c , 7b , and 7a were evaluated as DNA binders. Compound 7c displayed the highest binding affinity. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile was calculated for the four most active compounds in comparison to doxorubicin as reference drug. Our derivatives 7a , 7b , and 7c displayed a very good calculated ADMET profile in comparison to doxorubicin.


Assuntos
Desenho de Fármacos , Substâncias Intercalantes , Proliferação de Células , DNA/química , Doxorrubicina/farmacologia , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Triazóis
17.
Arch Pharm (Weinheim) ; 355(5): e2100487, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194810

RESUMO

Novel triazoloquinazolines were designed and synthesized and evaluated as anticancer agents against HepG2 and HCT-116 cells. The biological testing data corresponded well to those of the molecular docking studies. The HCT-116 cell line was most affected due to the actions of our derivatives. Derivative 7a was the most potent one against both HepG2 and HCT116 cells, with IC50 = 7.98 and 5.57 µM, respectively. This compound showed anticancer activity that was nearly equipotent to that of doxorubicin against HepG2 cells, but higher than that of doxorubicin against HCT116 cells (IC50 = 7.94 and 8.07 µM, respectively). Compounds 8, 7b , and 6f showed excellent anticancer activities against both the HCT116 and HepG2 cell lines. The highly active compounds 6f , 7a , 7b , and 8 were evaluated for their DNA-binding activities. Compounds 7a and 8 showed the highest binding activities. These derivatives potently intercalate in DNA, at IC50 values of 42.90 and 48.13 µM, respectively. Derivatives 6f and 7b showed good DNA-binding activities, with IC50 values of 54.24 and 50.56 µM, respectively. Furthermore, in silico calculated ADMET profiles were established for our four highly active derivatives, in comparison to doxorubicin. Our derivatives 6f , 7a , 7b , and 8 showed a very good ADMET profile. Compounds 6f , 7a , 7b , and 8 follow Lipinski's rules, while doxorubicin violates three of these rules.


Assuntos
Antineoplásicos , Substâncias Intercalantes , Linhagem Celular Tumoral , Proliferação de Células , DNA/química , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas , Relação Estrutura-Atividade , Triazóis
18.
Arch Pharm (Weinheim) ; 355(4): e2100412, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35014084

RESUMO

Eleven novel [1,2,4]triazolo[4,3-c]quinazolines were designed, synthesized, and evaluated against HepG2 and HCT-116 cells. The molecular design was performed to investigate the binding mode of the proposed compounds with the DNA active site. The data obtained from biological testing highly correlated with that obtained from molecular modeling. HCT-116 was found to be the most sensitive cell line to the influence of the new derivatives. In particular, compounds 6f and 6e were found to be the most potent derivatives over all the tested compounds against the two HepG2 and HCT116 cancer cell lines, with IC50 = 23.44 ± 2.9, 12.63 ± 1.2, and 25.80 ± 2.1, and 14.32 ± 1.5 µM, respectively. Although compounds 6f and 6e displayed less activity than doxorubicin (IC50 = 7.94 ± 0.6 and 8.07 ± 0.8 µM, respectively), both could be useful as a template for future design, optimization, and investigation to produce more potent anticancer analogs. The most active derivatives 6a , 6c , 6e , and 6f were evaluated for their DNA-binding activities. Compound 6f displayed the highest binding affinity. This compound potently intercalates DNA at a decreased IC50 value (54.08 µM). Compounds 6a , 6c , and 6e exhibited good DNA-binding affinities, with IC50 values of 79.35, 84.08, and 59.35 µM, respectively. Furthermore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles were calculated for the four most active compounds in comparison to doxorubicin as a reference drug. Our derivatives 6a , 6c , 6e , and 6f displayed very good in-silico-predicted ADMET profiles. Doxorubicin violates three of Lipinski's rules, our derivatives 6a , 6c , 6e , and 6f do not violate any rule.


Assuntos
Antineoplásicos , Quinazolinas , Proliferação de Células , DNA/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Substâncias Intercalantes/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Quinazolinas/farmacologia , Relação Estrutura-Atividade
19.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615391

RESUMO

This review summarized the current breakthroughs in the chemistry of acridines as anti-cancer agents, including new structural and biologically active acridine attributes. Acridine derivatives are a class of compounds that are being extensively researched as potential anti-cancer drugs. Acridines are well-known for their high cytotoxic activity; however, their clinical application is restricted or even excluded as a result of side effects. The photocytotoxicity of propyl acridine acts against leukaemia cell lines, with C1748 being a promising anti-tumour drug against UDP-UGT's. CK0403 is reported in breast cancer treatment and is more potent than CK0402 against estrogen receptor-negative HER2. Acridine platinum (Pt) complexes have shown specificity on the evaluated DNA sequences; 9-anilinoacridine core, which intercalates DNA, and a methyl triazene DNA-methylating moiety were also studied. Acridine thiourea gold and acridinone derivatives act against cell lines such as MDA-MB-231, SK-BR-3, and MCF-7. Benzimidazole acridine compounds demonstrated cytotoxic activity against Dual Topo and PARP-1. Quinacrine, thiazacridine, and azacridine are reported as anti-cancer agents, which have been reported in the previous decade and were addressed in this review article.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Antineoplásicos/química , Linhagem Celular , Substâncias Intercalantes/farmacologia , DNA/metabolismo , Neoplasias da Mama/tratamento farmacológico , Acridinas/farmacologia , Acridinas/química , Linhagem Celular Tumoral
20.
J Med Chem ; 65(1): 436-459, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-34964345

RESUMO

Natural berberine-derived azolyl ethanols as new structural antibacterial agents were designed and synthesized for fighting with dreadful bacterial resistance. Partial target molecules exhibited potent activity against the tested strains, particularly, nitroimidazole derivative 4d and benzothiazole-2-thoil compound 18b, with low cytotoxicity both exerted strong antibacterial activities against multidrug-resistant Escherichia coli at low concentrations as 0.007 and 0.006 mM, respectively. Meanwhile, the active compounds 4d and 18b possessed the ability to rapidly kill bacteria and observably eradicate the E. coli biofilm by reducing exopolysaccharide content to prevent bacterial adhesion, which was conducive to alleviating the development of E. coli resistance. Preliminary mechanistic explorations suggested that the excellent antibacterial potential of molecules 4d and 18b might be attributed to their ability to disintegrate membrane, accelerate ROS accumulation, reduce bacterial metabolism, and intercalate into DNA groove. These results provided powerful information for the further exploitation of natural berberine derivatives against bacterial pathogens.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Berberina/química , Berberina/farmacologia , Escherichia coli/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Biofilmes/efeitos dos fármacos , DNA Bacteriano/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/farmacologia , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...